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Abstract

Holographic techniques are fundamental to applications such as volumetric displays ,

high-density data storage and optical tweezers that require spatial control of intricate

optical  or acoustic fields  within a three-dimensional volume. The basis of holography

is spatial storage of the phase and/or amplitude profile of the desired wavefront  in a

manner that allows that wavefront to be reconstructed by interference when the

hologram is illuminated with a suitable coherent source. Modern computer-generated

holography  skips the process of recording a hologram from a physical scene, and

instead calculates the required phase profile before rendering it for reconstruction. In

ultrasound applications, the phase profile is typically generated by discrete and

independently driven ultrasound sources ; however, these can only be used in

small numbers, which limits the complexity or degrees of freedom that can be attained

in the wavefront. Here we introduce monolithic acoustic holograms, which can

reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound

beams. We use rapid fabrication to craft the holograms and achieve reconstruction

degrees of freedom two orders of magnitude higher than commercial phased array

sources. The technique is inexpensive, appropriate for both transmission and reflection

elements, and scales well to higher information content, larger aperture size and higher

power. The complex three-dimensional pressure and phase distributions produced by
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these acoustic holograms allow us to demonstrate new approaches to controlled

ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that

acoustic holograms will enable new capabilities in beam-steering and the contactless

transfer of power, improve medical imaging, and drive new applications of ultrasound.
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Extended data figures and tables

Extended Data Figure 1 Analysis of the 3D print quality.
a, Map of design thickness ΔT  from hologram calculation, as sent to the printer. b,

Measured thickness ΔT  map from X-ray computed tomography of the printed

hologram. Red circles mark sections of inhomogeneous material density. c, Difference

between design (a) and measured (b) thicknesses. d–f, Comparison of thickness profiles

D
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ΔT for design (blue) and measurement (red) along y = 10 mm (d), y = 0 mm (e), and y = 

−10 mm (f). The λ scale bar in d shows the wavelength in water at 2.06 MHz.

Extended Data Figure 2 Reconstruction of the target image.
a, Virtual reconstruction of the pressure field from the final hologram after IASA. b,

Hydrophone measurement of the acoustic pressure p, normalized by the highest

measured pressure p , in the plane z = 30 mm.max

Extended Data Figure 3 One acoustic hologram can store multiple images in
different image planes.
Reconstruction yields all images concurrently. a, The calculated synthetic phase map

recorded in the hologram. b–d, Thermochromic detector measurement of local

acoustic intensity of the reconstruction at the three independent image planes. Scale

bar, 10 mm (applies to all images). See Methods for more details of the measurement,

and Extended Data Fig. 4 for complementary hydrophone scans.

Extended Data Figure 4 Multiple images from one hologram.
a, Hydrophone measurements for each image plane. b, Virtual reconstruction of the

final hologram.

Extended Data Figure 5 Pictures of levitated objects in air.
a, Aluminium. b, Silicon. c, Lithium. d, Expanded polystyrene. e, f, Hollow glass

microspheres. g, Water mist, aerosolized at the transducer face, h, coalesces into

droplets trapped in the acoustic field. i, Calculated Gor’kov potential, ‘+’ signs indicate

points with trapped droplets in h. All scale bars, 5 mm. Gravity is acting downwards in all

configurations.

Extended Data Figure 6 Radiation forces on spherical silicone particles.
a, Radiation force on a spherical PDMS particle as a function of its radius exposed to a

plane travelling wave with frequency f = 2 MHz, and amplitude p  = 100 kPa. b, Low-

drive-voltage hydrophone measurement of pressure distribution scaled by factor of 2.5

to match conditions used in the trapping experiments. c, Detail of section A with force

0
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vectors. d, Photograph of particles assembled at the pressure maxima in section A. Scale

bar, 1 mm. e, Forces in x and z direction along the cut line shown in c for different particle

radii (see key at top right). f, Microscopy image of the PDMS particle suspension used in

trapping experiments. Scale bar, 300 μm.

Extended Data Figure 7 Example sections showing force vectors and
corresponding photographs of the particle trap in operation.
Panels a and b show results from sections B and C respectively in Extended Data Fig. 6b.

Scale bars, 1 mm.

Extended Data Figure 8 Schematic of the hologram calculation.
a, The transducer output amplitude profile is used as the input boundary condition at

the hologram plane. b, c, After transmission through the hologram the wavefront is

propagated (red lines) to d, e, the desired image plane, where it is compared with f, the

target image, in this case a pure amplitude image of the target image. During hologram

optimization the target image amplitude is imposed upon the image plane (the phase is

preserved) and then propagated back to the hologram. Again, the amplitude at the

hologram plane is set to match that produced by the transducer (accounting for

transmission losses) and the process is repeated. After several iterations the optimized

reconstructed image (shown here) converges to the target.

Extended Data Figure 9 Experimental set-up for waterborne ultrasound
studies.
Experiments were conducted in an open-topped, water-filled glass tank lined on three

sides by acoustic absorber. a, Side view and b, perspective view of the set-up for particle

assembly into a target image used to acquire Fig. 2a. The PDMS microparticles are

contained within the particle cell located above the hologram. The hologram is

mounted on the transducer, which is enclosed in a waterproof box, and projects the

soundfield upwards. The cell is arranged so that its upper window coincides with the

image plane of the hologram. Photographs and movies are acquired by the camera

mounted above the water’s surface. c, Side view and d, perspective view of the set-up
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Supplementary information

used to demonstrate phase-gradient surfers and acquire Fig. 3. The hologram, mounted

on the transducer, projects a soundfield upwards towards the surface of the water. The

hologram is positioned so that its image plane is at the water–air interface. Particles

travel along the resulting crests, propelled by the projected phase gradient. The motion

is captured by the camera located above the surface of the water. Sizes not to scale.

Acoustic particle assembly
The container, filled with a suspension of silicone particles in water, is positioned above

the acoustic hologram with the transducer located in the back. The scene is observed

from the top. Initially the sound field is off and the particles are at rest. When the

transducer is turned on, the particles collect at the top window of the container

(towards observer) and assemble in the form of the “Dove of Peace”. The trapping sites

are defined by the projected sound pressure image. When the system is turned off the

ensemble collapses and particles settle to the bottom of the container. (MP4 4012 kb)

Acoustic surfers
Two objects, in the form of spherical caps, move along circular paths of opposite

direction. The scene is first observed from the side then from above. The outer object

has a diameter of 4 mm and the inner object a diameter of 2 mm, with both heights being

equal to 0.5 mm. The radii for the inner and outer trajectory are 8 mm and 16 mm,

respectively, and the projected acoustic phase gradient for both paths is about 1

rad/mm. This corresponds to a topological charge of +8 for the inner path and -16 for the

outer path. The objects will follow the closed contour indefinitely until the transducer is

turned off. The same projected phase gradient is then used to propel different objects.

The last part demonstrates the effect of an open contour. Observed from above, a blue

spherical cap of 4 mm diameter and 0.5 mm height is manually placed at the start of the

open trajectory with a phase gradient of about 1 rad/mm. The yellow line marks the

tracked particle position in each frame. At the end of the contour the particle is ejected

and free to float over the water surface. (MP4 5427 kb)

Wave propagation z-scan
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This video shows the amplitude (left) and phase (right) plot of the calculated,

propagating acoustic field for the open contour phase gradient image. The video shows

the field while scanning along the z-direction. The z coordinate is displayed above the

amplitude plot. The image plane is located at z = 30 mm. (MP4 11046 kb)

Double droplet levitation
Close up view of the air cavity with the hologram positioned at the top and the

transducer at the bottom. Two water droplets are manually loaded into the traps using a

syringe needle. Their diameters are approximately 1.1 mm. (MP4 5553 kb)
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